Dynamically Conﬁgurable pHEMT Model Using Neural Networks

TU1CA4

for CAD

Ben Davis, Carl White, Member, IEEE, Michel A. Reece, Melvin E. Bayne, Jr., Member, IEEE,
Willie L. Thompson, II, Member, IEEE, Nathan L. Richardson, and Lawrence Walker, Jr.

Center of Microwave RF and Satellite Engineering (COMSARE), Morgan State University,
Baltimore, MD, 21239, US

t

Abstract — A novel approach to developing CAD
microwave device models is presented. Traditional CAD
devices are implemented using static empirical equations to
describe electrical behavior. Recently, neural networks have
been used in place of empirical equations to model device
behavior. This paper describes the implementation of a CAD
device model that utilizes a dynamically configurable
combination of empirical equations and neural networks te
increase the flexibility of the model’s capabilities. The model
was developed for pHEMT devices but can be custemized to
work with other device structures such as HBTs. The
framework for this model is a common-source large-signal
equivalent FET circuit. With the exception of the drain
current source, all of the nonlinear elements of the circuit are
configurable to either empirical or bias-dependent peural
network controlled components. The neural network
architecture employed is based on the knowledge-based
algorithm.

1

L INTRODUCTION

The application of device modeling in the microwave
CAD industry is vital to the efficiency of design cycles in
production environments. The traditional method of
device modeling is fime-intensive. It involves extensive
measurement  time and mathematical optimization.
Popular existing device models are not as well suited for
newer device technologies or highly nonlinear des:gns as
one would like. Empirical equations do not completely
model highly nonlinear behavior such as compression.
One of the pitfalls of using empirical equations in models
is that they do not accurately model the device behavior in
all regions of operation. A logical approach would be to
implement a piecewise solution to cater to individual
regions of operation. Many times using a piecewise
implementation leads to continuity problems. In addition,
in complex simulations such as harmonic balance, it is
necessary for equations to be very accurate in order to
successfully converge to 2 solution. These conditions
make the development of an empirical based model
painstaking. Additionally, these models sometimes lead to
simulation failures in highly nonlinear situations. Using a
neural network to model the electrical behavior of a
device model affords the ability to characterize nonlinear
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behavior statistically without the necessity of a defined
empirical relationship. Knowledge-based neural networks
provide additional accuracy given the knowledge of the
general shape of the data being modeled. Implementation
of the knowledge based neural network process into CAD
device models increases simulation accuracy while
reducing and simplifying development. Introducing the
ability to dynamically configure the device equivalent

-circuit elements between empirical and neural network
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definitions gives the modeler freedom to tailor the model -

to different applications without having to redevelop it. In
addition, it provides greater optimization on a particular
circuit element.

COMSARE has developed a new model that combines
elements that are based on both empirical expressions and
neural networks, which is well suited for newer device
technologies. This model is easier to develop than
traditional models and is adaptable to an expansive range
of applications. This adaptable neural network FET
{(ANNFET) model has the capability of being dynamically
reconfigured by the user such that any empirically based
element of the traditional FET model can be exchanged
for a neural network component. A neural network
component is defined by an electrical element such as a
resistor, capacitor, or current source whose value is
mathematically equated by a neural network.

This paper will outline the development of this model
and present a comparison of its performance with a
traditional empirically based CAD - FET model. Thke
organization of this paper is as follows. Section II will
give a brief outline of knowledge-based neural networks
and its relation to this application. Section III details the
design and implementation of the model into Agilent
ADS, Section IV will present an evaluation of a model
that was produced and verified against measured data.
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H. KNOWLEDGE-BASED NEURAL NETWCRKS

A.  Knowledge-Based Neural Networks

In previous work, COMSARE used the backpropagation
technique to create neural networks. Now the knowledge-
based (KB) technique has been instituted. There are
several advantages to using the KB algorithm over the
backpropagation technique. Neural networks created
using the backpropagation algorithm are much more data
intensive than those created using KB algorithm. This
means they require a larger data space for the neural
network to ‘learn’. This, in turn, increases development
time. Using the KB technique cuts down on training time
and reduces the amount of data needed to produce a
model, In addition, the KB is better able to extrapolate
behavior outside a range in which it was trained. The
knowledge-based neural network contains additional
hidden layers: the knowledge layer, boundary layer,
region layer, and normalized region layer. The knowledge
layer institutes an empirical or semi-analytical equation
that gives the neural network output a ‘shape’ that
resembles the desired output. The boundary layer expands
on the knowledge layer by describing a case-specific
equation that the data most resembles.

B. KB Neural Network Generation

To adopt the KB neural network technology for device
modeling, COMSARE developed software to produce
weight vectors for a given data set, The data typically
consisted of S-parameter and DC characteristics. This data
was acquired from standard device modeling and
extraction tools. The software, which let the wuser
determine the parameters of the neural network such as
number of neurodes and desired error tojerance, accepted
the data in a file and trained the neural network. The
weight vector was saved in a file for use in the end
application, the CAD model.

The empirical equations in the knowledge layer were
predetermined and implemented into the neural network
generation software (NNGS). For the work done in this
paper, modified versions of the Angelov [4] current and
capacitance equations were used.
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. MODEL DEVELOPMENT AND
IMPLEMENTATION
A Data Acquisition

As a case study, two models were developed for two
devices. The devices used were two GaAs pHEMTs. The
Triquint Texas process was used for both devices, one
sized at a gate width of 300 um and one sized at a gate
width of 600 um. The devices were acquired from Johns
Hopkins Applied Physics Laboratory. An exiraction was
performed on these devices to acquire S-Parameters and
DC 1V characteristics.

The DC measurements were acquired in typical fashion
using standard extraction software. The hardware used
was a vector network analyzer and low-power DC source
monitor. The devices were swept through a drain bias
range of 0 volts to 6 volts. The gate bias sweep range was
from 0.9 volts to O volts, where —0.9 volis is the pinch-
off voltage.

The S-Parameter data was acquired, again using
standard extraction software, through a range of frequency
and bias voltages. The biases chosen were selected from
regions where the AC and DC behavior significantly
changed.

The S-parameter data taken was processed by in-house
software to determine the values of the parasitic and
intrinsic elements.

B, KBNN Training

This data was used to develop the neural networks of
the model elements. From the S-parameter data, a table of
nonlinear gate capacitances, Cgs and Cgd, was determined
with dependency on bias voltages. Likewise, the DC TV
measurement data was used to produce a table of bias-
dependent current values. These three entities were trained
independently for about three hours each. In each case, the
error tolerance was below le-6. Each training session
produced a file of neural network model parameters. This
file contained the optimized weights and the network
architecture configuration parameters.



ANNFET MODEL CONFIGURABILITY

Nontinear Element Empirical Neural Network
Ips Yes Yes
Iss Yes No
Lop Yes No
Cop Yes Yes
Cos Yes Yes
Table I - ANNFET Model Element Configurability
c Model Implementation precedence if the model user selects a discrete value for

The implementation of the ANNFET model was done
in a popular microwave system design package. In order
to implement the model, integration with the neural
network software was achieved through a wrapper.
Model implementation into the CAD design software
required a description of the equivalent circuit and its
voltage dependent current and charge relationships. The
topology was defined by the voltage dependent
admittance parameters, In typical empirical models, the
nonlinear current and charge relationships are described
by voltage dependent empirical expressions. In the
ANNFET model, the empirical expressions are replaced
by an interchangeable switching mechanism that uses

either empirical expressions or neural network
processing algorithms. In Figure 1, the equivalent
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Figure 1 - ANNFET equivalent circuit model

circuit of the ANNFET mode is shown. In practice, if
the user of the model desired to implement a neural
network based drain-source curtent, a file name 1is
supplied at the CAD environment intetface. The file
specifies the neural network parameters for that
element. The wrapper code in the model then interfaces
with the neural network software to generate the neural
network topology and processes the neural network to
produce the voltage dependent current. Alternatively,
the empirical description of an element will, take

-
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that element. The code for the model automatically
rearranges the topology depending on the selection of
each element’s type. The same process occurs for the
other elements. Table 1 lists the configurabilities for
each nonlinear element of the ANNFET model.

IV. MODEL EVALUATION

A.

After the models of the two devices were
implemented, simulations were done to determine how
well the models could reproduce the measured data,

The simulated S-parameters match well against the
measurements.,

The DC IV characteristics were measured for both
devices. The simulated DC 1V characteristics match
well against the measurements, Figure 2 illustrates a
comparison of the DC IV characteristics for the
ANNFET model of the 300 um device and the
corresponding measured data. Very good agreement is
achieved with the drain-source current, gate-source
capacitance and gate-drain capacitance being modeled
by the neural network. All other elements were defined
by the Angelov model parameters.

Measured vs. Model

B. Comparison

To validate the robustness of the new model, a
comparison of similar metrics was performed between it
and the empirical Angelov FET model.

The same measurement data from the two devices
were used to extract Angelov models. This was done
using in-house extraction tools. The Angelov model
was also implemented into the CAD simulator. Identical
simulations were performed to compare its performance
to the ANNFET model.

Particular attention was paid io the comparison of the
models” DC IV characteristics near the pinch-off region.



Considering that the DC IV characteristics are the most
nonlinear component of the measured data it follows
that it is also the most nonlinear component of the
model. ’

It was observed that in the pinch-off region, the

Angelov current expression does not model the DC IV
behavier well. The knowledge-based medel is much
better able to the model the DC IV curves in the pinch-
off region. This makes the ANNFET model very
attractive for designers of Class F amplifiers as il gives
more accurate current modeling in the pinch-off region.
COMSARE has shown good results in the design of a
Class F amplifier using this model [1]. The DC IV
curve simulation of the ANNFET model in the pinch-
off region is illustrated in Fig 3. Much better agreement
is achieved by using the neural network to model the IV
characteristics instead of the empirical equation.

V. CONCLUSION

A new CAD device model implementing a
combination of traditional empirically based lumped
elements and knowledge-based neural network elements
was developed. This model can be dynamically
configured to suit a variety of device structures and
applications. The model was implemented into a CAD
simulator and verified against two GaAs pHEMT
devices. Simulated and measured data have very good
agreement. The model was compared to the Angelov
FET model for further validation. The simulations of
the new model were just as accurate as those of the
Angelov model and more so in the case of DC IV
curves in the pinch-off region. The simulation accuracy
combined with the ease and speed of development make
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Figure 2 - Angelov medel DC TV curves at pinch-off
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the new model beneficial to the microwave CAD
community.

Future development of this model will include a
neural network implementation of gate diode currents.
In addition, other empirical equations for the knowledge
layer of the neural network may be introduced to extend
its accuracy for other devices.
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Figure 3 - ANNFET model DC IV curves at pinch-off
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