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Abstract - A novel appmach to developing CAD 
microwave device models is presented. Traditional CAD 
devices are implemented using static empirical equations to 
describe electrical behavior. Recently, neural networks have 
been used in place of empirical equations tu model device 
behavior. This paper describes the implementation of B CAD 
device model that utilizes a dynamically configurable 
combination of empirical equations and neural networks to 
increase the flexibility of the model’s capabilities. The model 
was developed for pHEMT devices but can he customized to 
work with other device structures such as HBTs. The 
framework for this model is a common-source large-signal 
equivalent FET circuit. With the exception of the drain 
current source, all of the nonlinear elements ofthe circuit are 
configurable to either empirical or bias-dependent neural 
nehvork controlled components. The neural network 
architecture employed is based on the knowledge-based 
algorithm. 

I. II~TRODUC~ON 

The application of device modeling in the microwave 
CAD industry is vital to the efficiency of design cycles in 
production environments. The traditional method of 
device modeling is time-intensive. It involves extensive 
measurement time and mathematical optimization. 
Popular existing device models are not as well suited for 
newer device technologies or highly nonlinear d&igns as 
one would like. Empirical equations do not completely 
model highly nonlinear behavior such as compression. 
One of the pitfalls of using empirical equations in models 
is that they do not accurately model the device behavior in 
all regions of operation. A logical approach would be to 
implement a piecewise solution to cater to individual 
regions of operation. Many times using a piecewise 
implementation leads to continuity problems. In addition, 
in complex simulations such as harmonic balance, it is 
necessary for equations to be very accurate in order to 
successfully converge to a solution. These conditions 
make the development of an empirical based model 
painstaking. Additionally, these models sometimes lead to 
simulation failures in highly nonlinear situations. Using a 
neural nehvork to model the electrical behavior of a 
device model affords the ability to characterize nonlinear 

behavior statistically without the necessity of a defined 
empirical relationship. Knowledge-based neural networks 
provide additional accuracy given the knowledge of the 
general shape of the data being modeled. Implementation 
of the knowledge based newal network process into CAD 
device models increases simulation accuracy while 
reducing and simplifying development. Introducing the 
ability to dynamically configure the device equivalent 
circuit elements between empirical and neural network 
definitions gives the modeler freedom to tailor the model 
to different applications without having to redevelop it. In 
addition, it provides greater optimization on a particular 
circuit element. 

COMSAFG has developed a new model that combines 
elements that are based on both empirical expressions and 
neural networks, which is well suited for newer device 
technologies. This model is easier to develop than 
traditional models and is adaptable to an expansive range 
of applications. This adaptable neural network FET 
(ANNFET) model has the capability of being dynamically 
reconfigured by the user such that any empirically based 
element of the traditional FET model can be exchanged 
for a neural network component. A neural network 
component is defined by an electrical element such as a 
resistor, capacitor, or current source whose value is 
mathematically equated by a neural network. 

This paper will outline the development of this model 
and present a comparison of its performance with a 
traditional empirically based CAD FET model. The 
organization of this paper is as follows. Section II will 
give a brief outline of knowledge-based neural networks 
and its relation to this application. Section III details the 
design and implementation of the model into Agilent 
ADS. Section IV will present an evaluation of a model 
that was produced and verified against measured data. 
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II. KNOWLEDGE-BASED NEURAL NETWORKS 

A. Knowledge-Based Neural Networks 

In previous work, COMSARE used the backpropagation 
technique to create neural networks. Now the knowledge- 
based (KB) technique has been instituted. There are 
several advantages to using the KB algorithm over the 
backpropagation technique. Neural networks created 
using the backpropagation algorithm are much more data 
intensive than those created using KB algorithm. This 
means they require a larger data space for the neural 
network to ‘learn’. This, in tom, increases development 
time. Using the KB technique cuts down on training time 
and reduces the amount of data needed to produce a 
model. In addition, the KB is better able to extrapolate 
behavior outside a range in which it was trained. The 
knowledge-based neural network contains additional 
hidden layers: the knowledge layer, boooh layer, 
region layer, and normalized region layer. The knowledge 
layer institutes an empirical or semi-analytical equation 
that gives the neural network output a ‘shape’ that 
resembles the desired output. The boundary layer expands 
on the knowledge layer by describing a case-specific 
equation that the data most resembles. 

B. KB Neural Network Generarim 

To adopt the KEI neural network technology for device 
modeling, COMSARE developed software to produce 
weight vectors for a given data set. The data typically 
consisted of S-parameter and DC characteristics. This data 
was acquired from standard device modeling and 
extraction tools. The software, which let the user 
determine the parameters of the neural nehvork such as 
number of neurodes and desired error tolerance, accepted 
the data in a file and trained the neural nehvork. The 
weight vector was saved in a tile for use in the end 
application, the CAD model. 

The empirical equations in the knowledge layer were 
predetermined and implemented into the neural network 
generation software (NNGS). For the work done in this 
paper, modified versions of the Angelov [4] current and 
capacitance equations were used. 

III. MODEL DEVELOPMENT AND 
IMPLEMENTATION 

A. Data Acquisition 

As a case study, hvo models were developed for two 
devices. The devices used were two GaAs pHEMTs. The 
Triquint Texas process was used for both devices, one 
sized at a gate width of 300 am and one sized at a gate 
width of 600 urn. The devices were acquired from Johns 
Hopkins Applied Physics Laboratory. An extraction was 
performed on these devices to acquire S-Parameters and 
DC IV characteristics. 

The DC measurements were acquired in typical fashion 
using standard extraction sofiware. The hardware used 
was a vector network analyzer and low-power DC source 
monitor. The devices were swept through a drain bias 
range of 0 volts to 6 volts. The gate bias sweep range was 
from -0.9 volts to 0 volts, where -0.9 volts is the pinch- 
off voltage. 

The S-Parameter data was acquired, again using 
standard extraction software, through a range of frequency 
and bias voltages. The biases chosen were selected from 
regions where the AC and DC behavior significantly 
changed. 

The S-parameter data taken was processed by in-house 
software to determine the values of the parasitic and 
intrinsic elements. 

B. KBNN Training 

This data was used to develop the neural networks of 
the model elements. From the S-parameter data, a table of 
nonlinear gate capacitances, Cgs and Cgd, was determined 
with dependency on bias voltages. Likewise, the DC IV 
measurement data was used to produce a table of bias- 
dependent current values. These three entities were trained 
independently for about three hours each. In each case, the 
error tolerance was below le-6. Each training session 
produced a file of neural nehvork model parameters. This 
file contained the optimized weights and the network 
architecture configuration parameters. 
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Nonlinear Element 
IDS 
10s IGO 
COD 
GS 

ANNFET MODEL CONFIGURABILITY 

Empirical 
Yes 
Yes 
Yes 
Yes 
Yes 

Neural Network 
Y.3 
No 
No 
Yes 
Y.3 

Table I - ANNFET Model Element Configurability 

C. Model Implementation 

The implementation of the ANNFET model was done 
in a popular microwave system design package. In order 
to implement the model, integration with the neural 
network software was achieved through a wrapper. 
Model implementation into the CAD design software 
required a description of the equivalent circuit and its 
voltage dependent current and charge relationships. The 
topology was defined by the voltage dependent 
admittance parameters. In typical empirical models, the 
nonlinear current and charge relationships are described 
by voltage dependent empirical expressions. In the 
AhWFET model, the empirical expressions are replaced 
by an interchangeable switching mechanism that uses 
either empirical expressions or neural n&ark 
processing algorithms. In Figure 1, the equivalent 

Figure 1 - ANNFET equivalent circuit model 

circuit of the ANNFET mode is shown. In practice, if 
the user of the model desired to implement a neural 
network based drain-source current, a tile name is 
supplied at the CAD environment interface. The tile 
specifies the neural network parameters for that 
element. The wrapper code in the model then interfaces 
with the neural network software to generate the neural 
network topology and processes the neural network to 
produce the voltage dependent current. Alternatively, 
the empirical description of an element will, take 

precedence if the model user selects a discrete value for 
that element. The code for the model automatically 
rearranges the topology depending on the selection of 
each element’s type. The same process occurs for the 
other elements. Table I lists the configurabilities for 
each nonlinear element of the ANNFET model. 

IV. MODEL EVALUATK~N 

A. Measured vs. Model 

After the models of the hvo devices were 
implemented, simulations were done to determine how 
well the models could reproduce the measured data. 

The simulated S-parameters match well against the 
measurements. 

The DC IV characteristics were measured for both 
devices. The simulated DC IV characteristics match 
well against the measurements. Figure 2 illustrates a 
comparison of the DC IV characteristics for the 
ANNFET model of the 300 urn device and the 
corresponding measured data. Very good agreement is 
achieved with the drain-source current, gate-source 
capacitance and gate-drain capacitance being modeled 
by the neural network. All other elements were defined 
by the Angelov model parameters. 

B. Comparison 

To validate the robustness of the new model, a 
comparison of similar metrics was performed between it 
and the empirical Angelov FET model. 

The same measurement data from the hvo devices 
were used to extract Angelov models. This was done 
using in-house extraction tools. The Angelov model 
was also implemented into the CAD simulator. Identical 
simulations were performed to compare its performance 
to the ANNFET model. 

Particular attention was paid to the comparison of the 
models’ DC IV characteristics near the pinch-off region. 
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Considering that the DC IV characteristics are the most 
nonlinear component of the measured data it follows 
that it is also the most nonlinear component of the 
model. ’ 

It was observed that in the pinch-off region, the 
Angelov current expression does not model the DC IV 
behavior well. The knowledge-based model is much 
better able to the model the DC IV curves in the pinch- 
off region. This makes the ANNFET model very 
attractive for designers of Class F amplifiers as it gives 
more accurate current modeling in the pinch-off region. 
COMSARE has shown good results in the design of a 
Class F amplifier using this model [I]. The DC IV 
curve simulation of the ANNFET model in the pinch- 
off region is illustrated in Fig 3. Much better agreement 
is achieved by using the neural network to model the IV 
characteristics instead of the kmpirical equation. 

v. CONCLUStON 

A new CAD device model implementing a 
combination of traditional empirically based lumped 
elements and knowledge-based neural network elements 
was developed. This model can be dynamically 
configured to suit a variety of device stmchues and 
applications. The model was implemented into a CAD 
simulator and verified against two &As pHEMT 
devices. Simulated and measured data have very good 
agreement. The model was compared to the Angelov 
FET model for further validation. The simulations of 
the new model were just as accurate as those of the 
Angelov model and more so in the case of DC IV 
curves in the pinch-off region. The simulation accuracy 
combined with the ease and speed of development make 

the new model beneficial to the microwave CAD 
community. 

Future development of this model will include a 
neural network implementation of gate diode currents. 
In addition, other empirical equations for the knowledge 
layer of the neural network may be introduced to extend 
its accuracy for other devices. 
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Figure 2 Angelov model DC IV carves at pinch-off 
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Figure 3 - ANNFET model DC IV curves at pinch-off 
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